DUPLETS, D-U-P-L-E-T-S. What exactly is a duplet? Some sort of loopy, looped, entrancing, unquantifiable kind of game, that's hitting the Yuppie market faster than Danny O's Los Angeles pop-up shops in the hands of green men from the band Dullipet? Perhaps something to do with music? You must mean triplets, right? Well, not exactly. Duplets, in fact, are the opposite of triplets. Triplets are always interpreted as three notes in the time of two. In other words, three eighth note triplets will take up the same amount of time as two normal eighth notes. Duplet values, on the other hand, are interpreted as two notes in the time of three. When you scan across a set of eighth note duplets, they will have the same value in these normal eighth notes.

If this concept is a new one for you, you may wonder why a composer would want to use duplet figures? Isn't a quarter note broken down into two eighth notes at the first level of subdivision? So, when working in simple meters such as 2/4, 3/4, or 4/4, you'll rarely encounter duplets. The whole reason that simple meters are classified as "simple" is that beats are normally divided by units of two—quartets are divided by two to get eights, eights are divided by duets to get sixteens, and so forth.

There are very little reason for a composer to rely on duplets. A new sound. But, what about compound meters? In compound meters such as 3/8, 6/8, 9/8, or 12/8, the larger beats are broken down in units of three sixteens.

Take a look at Example 1. Here you see four measures of 6/8 time. The first bar, consisting of two dotted quavers, reinforces the two eighth note beats that form the larger rhythmic structure of this meter. The second measure, six eighth notes, would be played by placing a stroke on each count of the bar. By looking at these first two measures, you can see that the "beat" in a compound meter is the value of a dotted quarter note, and each dotted quarter can be divided into three equal parts by using eighth notes.

The third measure of this example contains the eighth note duplets. Each set of duplets has the same value as three eighth notes, and divides the dotted quarter into two equal parts. Again, like triplets, duplets are an example of "false notation." The composer is telling you, "Two eighths don't really equal the value of a dotted quarter, but let's pretend that they do, OK?" Notice that the syllables written under the duplets don't correspond to the six counts that are in the measure. Keep in mind that 6/8 time might have six counts, but there are only two main beats in each measure. When confronted with having to play duplets, the easiest way is to slide into a feeling of two beats to the measure. When you feel that there are two beats to the bar, then imagine you're playing normal eighth notes in a simple meter—in this case, 2/4.

To see where the duplets actually fall within the measure, take a look at Example 2. This upper voice, written on the third space of the staff, shows each sixteenth in a measure of 6/8. Normally, these sixteenths would be counted as shown in this example. The lower voice illustrates that the duplets would fall on every third sixteenth. In essence, a measure of eighth note duplets asks you to divide six counts into four equal parts. A little math (or a little pocket calculator) will tell you that each of the duplet notes would equal one and a half counts. In other words, each duplet has the value of three sixteenths notes.

There already exists a notational symbol that has the value of three sixteenths of the dotted eighth. Take a look at Example 3. Here you see two measures that are actually the same in every respect. The first bar uses the false notation of the duplet while the second employs the figure of the dotted eighth. So, if these two bars are exactly the same, why bother with duplet figures? Good question. Many composers feel that the duplets will sound smoother and more relaxed. The dotted eighth notes require the performer to subdivide down to the level of sixteenth, so that they can keep track of all the numbers along with the "and" syllables. This means that each main beat will have to be divided into six parts. The duplets simply ask the performer to divide each beat into two equal parts.
Final Exercise.

parts. Which would you rather do?

Example 4 poses another problem. In
the second measure, you see a set of four
sixteenth notes with the duplet figure
above them. I'm sure you're wondering
why a "2" is above these notes rather
than a "4." Just like triplets, which are always
two in the time of two, duplets are always
two in the time of three. By using the
number two above these notes, you are
being asked to play two sixteenths in the
same amount of time as three normal
sixteenths. In the case of the second
measure, the four duplet sixteenths are
being asked to take the same amount of time as
six regular sixteenths: one full beat, or the
value of three eight notes.

If you have a handle on the second
measure of the example, the third
shouldn't present much of a problem. To
perform this measure, keep the feeling of
two beats per bar and imagine that you are

The last example really brings home the
relationship of 6/8 meter when duplets are
used, compared with 2/4 meter using

triplets. The lower line of the example
progresses from one division per beat,
through two, three, and finally four
divisions. Since this line is in a simple meter,
the figure of three divisions requires the
duplet notation. The upper line of this
example also progresses from one to four
divisions per beat. But since it is written in
6/8 time, the second and fourth measures
require triplet notation.

Most often, triplets and duplets are used
whenever a composer wants to change the
feeling and impression of the meter. By
playing a series of triplets in a simple
meter, the perception of compound meter
is achieved. This reverse holds true for a
series of duplets in any compound
meter.

Norman Wahlberg is an Associate Professor of
Music at Del Mar College in Corpus Christi,
Texas and serves as the principal timpanist with
the Corpus Christi Symphony Orchestra. He's
had a love affair with electronic percussion
instruments for several years.

All examples in this column were produced
using Finale courtesy of Coda Software.